Command Processing
And Other Stuft

Gordon Watts
6-6-97
Online Meeting

e Command Processing
e Level-3 Monitor Data
e Errors

e Logs

You can find all of this talk on WWW:
http://d0sgi0.fnal.gov/ gwatts/talks/

Command Classes

First a little context (DOSNTY):

|

From Thread Thread Thread T&ggﬁ
Level-3
Data
Token

\I/

Command
Processor

Commands & Querie
from other systems

DOSnty

e Many threaded application

e Commands must interact
with threads

e Commands aren’t part of threads

Command Types

e Slow Commands
— Wait for program to complete
operation before disconnecting

— Sometimes very long operations
(seconds or minutes?).

— Example: Reset/Restart, Empty
Queues, etc.
e Quick Commands
— Never requires interacting or
blocking another thread

— Start a operation but don’t wait for
its completion

— Examples: Quit as soon as empty,
How many events processed?

Slow Commands should not block
Quick Commands

Other Requirements

e Command library is independent of

I/O method
— TCP/IP, DAIP, Named Pipes, etc.

e Independent of format of input data
stream

— text or binary

e Auto processing of incoming
commands

e Commands can have conversations
(context)

e Easy to use (Yeah, Right!).

Command Classes

Everything based around the command
class.

e Standard execute method

— Takes a connection_conversation as an
argument

e Scope is as long as command is active.

Command dispatch is done by the

command _processor class.

e Maintains a list of command factory
classes

— One command_factory per command

e Methods to manage list (add/remove
commands).

e Knows about a connecton manager

ommand Classes

(N

— | command_processor

list

single

>1 | command_factory

createnT

command

~

quick_command

JAN

connection objects::connection_manager

quick_command_factory

run_command_factory

run_command

One set for each command h|

Connection Classes

The message is the abstract object passed
around

e Fed to and gotten from
a connection_conversation

e Can block waiting for a new message

The connection manager keeps track of
connections.

e Waits for new connection to a port

e Blocks threads

Connection Classes

(Not Registered Copy)

connection_manager

JAN

created_by

——Q) connection_conversation

N\

message

One set for every type ofh
connection text_connection_manager text_message text_conversation

Event Trace

s Ao ~
command_processor connection_manager command_factory connectioniconversationjpy) message command
n -

wait_for_new_connection
|wait_Tor_new_connectc

New

get_message New

is_this_your_command

word

create_command

execute

s?awn thread
Delete
-——————{
o
get_message cmd may return and
New spawn new thread

Delete

T delete

Delete

You Call This Simple!?

e Helper templates and classes
for Text /Word based messages

e Build command _factory automatically

e Actual command process loop is tight
and clean

e Must write the command subclass

Source Example

Define a new command:

class spit_cmd : public single_exchange_command {

public:
inline spit_cmd (void) {};
inline void execute_single_exchange
(const connection_message _cmd_text)
{std::cout << "this is junk" << std::endl;};
s

Main Program:

main ()
{

std::cout << "Hi there'" << endl;

istream_connection_manager inputer (std::cin);
command_processor cmd (inputer);

cmd . add_command (new simple_command_factory<spit_cmd> ("spit"));
cmd . process_single_command() ;

std::cout << "Done" << endl;

What is there?

e All the command classes

e connection classes for tty input

e Next are classes for DOAIP and NT
Named Pipes

e And a harsher test program

Level-3 Monitor Data

Level-3 will have data that needs to be
saved at the end of a run.

e Histograms (small), counters,
perhaps some physics information.

e Could be something like ntuples of
failed events (large data storage).

e Where should it go?
e How should it be handled?
e How big will it be?

Monitor Data Size

181220.8°0 1eak/sysIao Lz #

TST967'€2 (S914g9) ereq uop £802552£0°0 9PON/23s/SaAgY

98G0°090¥Z (SalAgIn) ereq UoIN 8t SOPON £lona]

T Buluuny sreap G29S'T €70 N0 28S/21AgY

0§ () awndn 800y 00 £710 1n0 98S/PIOM

| spoonobeosera | _\ 10913 24 SPION
01 panes sn3 z1%
000T (zH) a1ey 1820y 27

Error Reporting

From the Level-3 Point of View:

e Same online and offline API
e High level API simple (like last time).
e Low level allow plug in reporters

— Text output plug in

— TCP/IP output plugin

— L3 interface plugin

e Too complex?

Error Classes?

(Not Registered Copy)

error_server jo

error_notifier

7

logfile_notifier alarm_notifier tty_notifier

Log Files

I have a faIlt asy. ee I have several actually...

o Get a call at 4am... Use browser to

see what the DAQ shifter did

— Really tough — all logs must be ac-
cessible by a HTTP server.

e Every three months burn a CD with
all logs in HTML form

— Indexed by Run
— Indexed by Date

and then delete them!

Log Files con’t

Common Format?

e Each line contain a time stamp
e Logs contains run start/end entries

e Log files are periodically closed/new
one started (by run, by time?).

e Makes for ease of indexing.

If we supply the software for this, it
might be easy.

Log Files con’t

Auto Handling?

e Built into the API auto close/open
— Time
— Run

e Autonotificaton?

— Log Manager Process
— Copy log files to common area

— Interleave log entries for huge list?
— Do it on HTTP request?

e Is API same as for errors?

Conclusions

e This is the first time I’ve used OO de-
sign tools

e (Good to start with
e Can’t keep up once you start coding
e Are the command classes useful?

e Errors and Loggers. (et them early,
we can have an integrated system

— Just like the commands in the on-
line system.

